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Abstract 
In recent years, schools (as well as universities) have added cyber security to their computer sci-
ence curricula. This topic is still new for most of the current teachers, who would normally have a 
standard computer science background. Therefore the teachers are trained and then teaching their 
students what they have just learned. In order to explore differences in both populations’ learning, 
we compared measures of software quality and security between high-school teachers and stu-
dents. We collected 109 source files, written in Python by 18 teachers and 31 students, and engi-
neered 32 features, based on common standards for software quality (PEP 8) and security (de-
rived from CERT Secure Coding Standards). We use a multi-view, data-driven approach, by (a) 
using hierarchical clustering to bottom-up partition the population into groups based on their 
code-related features and (b) building a decision tree model that predicts whether a student or a 
teacher wrote a given code (resulting with a LOOCV kappa of 0.751). Overall, our findings sug-
gest that the teachers’ codes have a better quality than the students’ – with a sub-group of the 
teachers, mostly males, demonstrate better coding than their peers and the students – and that the 
students’ codes are slightly better secured than the teachers’ codes (although both populations 
show very low security levels). The findings imply that teachers might benefit from their prior 
knowledge and experience, but also emphasize the lack of continuous involvement of some of the 
teachers with code-writing. Therefore, findings shed light on computer science teachers as life-
long learners. Findings also highlight the difference between quality and security in today’s pro-
gramming paradigms. Implications for these findings are discussed. 

Keywords: cyber security, code metrics, software quality, software security, teachers’ learning, 
data mining 

Introduction 
In its very essence, the (cognitive) con-
structivist theory argues that knowledge 
and meaning are generated from interac-
tions between people’s experiences and 
ideas, that is, people construct their own 
understanding of the world (also, of 
themselves) through experiencing things 
and reflecting upon these experiences 
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(cf. Perkins, 1999; Phillips, 1995; Piaget, 2013). The constructivist theory has drawn huge atten-
tion in the educational theory and practice, and many pedagogical terms still in use today have 
been developed based on its philosophical roots, e.g., problem-based learning, situated learning, 
teacher as a coacher, learner-centred education (cf. Duffy & Cunningham, 1996; Richardson, 
2003). Of a special interest to the current work is the development of many educational pro-
gramming languages as part of the constructivism-as-pedagogy wave; the use of computer-based 
learning to complement Piaget’s constructivism is mostly attributed to Seymour Papert (1980). 
Since then, “learning to program” has become by many a synonym to “learning” per se (cf. May-
er, Dyck, & Vilberg, 1986; Soloway, 1986) and “computational thinking” is often considered as 
key to learning (Barr & Stephenson, 2011; Gazdial, 2008; Wing, 2006). Still today, many believe 
that learning to code should be an integral part of any school curriculum1; additionally, lifelong 
computer training programs often include—along with more traditional modules that teach how 
to work with popular software (like Microsoft Word or a Web browser)—modules that teach how 
to code (e.g., Seals, Clanton, Agarwal, Doswell, & Thomas, 2008). 

However, learning to program might be perceived as a Sisyphean task, as new programming lan-
guages are often being introduced and adopted by different communities. In other words, in prac-
tice, learning to program should not be considered as a one-time experience, but rather anyone 
involved with programming must be a true lifelong learner. Indeed, in recent years attention has 
been given to the preparation of computer science students as lifelong learners, with the presenta-
tion of various teaching methods—like problem-based learning, intentional learning environment, 
and collaborative learning—aimed on developing their capacity for self-direction and metacogni-
tive awareness (Cheong, 2013; Dunlap & Grabinger, 2003). One prominent group of such life-
long programming learners are computer science teachers who often need to adapt their curricu-
lum based on the changing popularity of programming languages. In many cases, teachers from 
within the system are quickly trained to be acquainted with the new curriculum. This scenario 
might lead to teachers teach material with which they are not fully familiar and in which they are 
not fully confident (Lapidot, 2004; Thompson, Bell, Andreae, & Robins, 2013). 

Another concern in such cases, taking into consideration that today’s young generation has easy 
access to vast amounts of information, is that students will progress with the new material faster 
than their recently-trained teachers can catch-up. This is often a result of teachers’ lack of 
knowledge of current trends in the field and of the state-of-the-art technology, or of their difficul-
ty to quickly adapt new technologies while their students already master them (Kordaki, 2013; 
Prensky, 2007).  

A striking example encompassing these two issues is the adaption into schools’ and universities’ 
curricula of cyber security (also known as computer security or IT security), that is, the practice 
of protecting computer systems from unauthorized access, change, or destruction. This step might 
seem only natural, as cyber security has caught much attention of governments and industries (cf., 
Andrijcic & Horowitz, 2006; Cavelty, 2008; Rowe & Gallaher, 2006; Stolfo et al., 2008). Fur-
thermore, cybersecurity may be seen as a bridge between the two classic domains of CS (software 
and hardware), hence requiring a new point of view on the practice of programming (Lukowiak, 
Radziszowski, Vallino, & Wood, 2014). In Israel, where the reported study was taken, a cyber 
security program has been offered in a few high-schools as part of their computer science pro-
grams. In these schools, existing computer science teachers are asked to teach the new domain 
which is also new to them; they are being trained in a special course that is given during after-
school hours and start to teach cyber security the following school year. 

                                                      
1 See, for example, the activity of the non-profit organization, Code.org, supported, among many 

others, by the high-tech industry giants, like Apple, Microsoft, Google, and Amazon. 
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The current study aims on understanding how teachers and students learn the new material from 
an empirical, data-driven, multi-view approach, in order to explore the differences between 
teachers’ and students’ learning. This is done by automatically extracting measures of quality and 
security from students’ and teachers’ codes (submitted during their learning) and applying data 
mining techniques to find patterns in them. This understanding might contribute to the pedagogy 
of teaching new materials, as well as to teacher development. In general, it highlights the ad-
vantages of a solid background in computer science for supporting lifelong programming learn-
ers. 

Related Work 
In this section we will review related work from two lines of research that are most relevant to the 
current study: differences between novices’ and experts’ programming, and code analysis (quality 
and security). 

Novices’ and Experts’ Programming 
Although the teachers participating in this study have not been trained before in either cyber secu-
rity or in Python  (one of the most popular programming language for cyber security), they may 
be considered as experts in the field of computer science (as well as in teaching it). The students, 
on the other hand, are novices in programming. Research on novices’ and experts’ programming 
knowledge had been flourished in the 1980s, with explicit comparison between these two popula-
tions and some interesting implications on teaching and learning this domain. Comparing accura-
cy and reaction time in solving simple text-book style programming tasks, Wiedenbeck (1985) 
had found that experts were significantly faster and more accurate than novices (undergraduate 
and graduate students) even in rather easy syntactic decisions; this finding is surprising, as the 
task involved consisted of merely “reading” simple code, hence supporting Wiedenbeck’s auto-
mation hypothesis, according to which experts automate some simple subcomponents of the pro-
gramming task. But more than automation, it was also found that experts and novices might rep-
resent differently problems they tackle; while novices begin problem representation with the 
problem literal features, experts first abstract an algorithm to solve it (Weiser & Shertz, 1983). 
This finding was later supported by Adelson (1984) and Pennington (1987), who found that ex-
perts’ mental representation of programs tend to be based on procedural/abstract rather than func-
tional/concrete units. Later, these findings were replicated by Bateson, Alexander, and Martin 
(1987), who found that experts did better than novices in syntactic memory (related to 
Wiedenbeck’s automation hypothesis), strategic skills and problem solving (related to Weiser and 
Shertz’s high-level problem representation approach). 

However, as Soloway and Ehrlich (1984) found, experts’ and novices’ performance can be essen-
tially the same when the program structures involved do not conform to the experts’ knowledge 
about programming rules. Furthermore, as Adelson (1984) demonstrated, novices can perform 
better than experts on abstract problems once they are aided in forming an abstract representation. 
Without support, novices’ level of abstractness of mental representation of computer programs 
might be poorly developed (Fix, Wiedenbeck, & Scholtz, 1993). Hence, the importance of sup-
porting each learner with the mental model best fit to them. 

The studies mentioned above used various measures to assess experts’ and novices’ programming 
skills and knowledge; these measures were mostly based on qualitative data collection (mainly 
programming-related tasks and interviews), rather than on assessment of the programs written by 
the novices/experts. Our approach is to compare between novices and experts, using automatical-
ly extracted software quality and security features. Similar approaches have been used recently 
for studying programming learning, mostly with a limited number of metrics, usually a-priori 
chosen to be mostly relevant to a given target variable (e.g., Jbara & Feitelson, 2014; Kasto & 



Software Quality and Security 

126 

Whalley, 2013; Piech, Sahami, Koller, Cooper, & Blikstein, 2012; Whalley & Kasto, 2014). Con-
tinuing this line of research, we take a bottom-up, rather explorative approach, relying on a com-
prehensive set of metrics, and assuming no relationships to any target variable. 

Software Metrics 
The need in defining and quantifying software quality emerged shortly after the development of 
the new domain of software engineering, in the late 1960s. The seminal works in this field not 
only defined theoretical frameworks of code quality, but also suggested explicit metrics for meas-
uring different dimensions of it (Boehm, Brown, & Lipow, 1976; McCall, Richards, & Walters, 
1976). These two frameworks share a few dimensions (e.g., correctness, reliability, and reusabil-
ity), but each holds a few unique features (e.g., testability in McCall et al., 1976, and under-
standability in Boehm et al., 1976). In both cases, each dimension was described and detailed by 
means of specific metrics to be measured. Furthermore, metrics were defined with their automa-
tion in mind; as setting a numerical value for metrics might be time-consuming, subjective, and 
expensive, “one would prefer for large programs an automated algorithm which examine the pro-
gram and produces a metric value” (Bohem et al., 1, p. 596). 

Automatic evaluation of software metrics has been used in a wide variety of studies, including in 
the educational context. One of the most striking examples of using automated scores of code 
quality was suggested by Truong, Roe, and Bancroft (2005); based on automatic analysis of their 
programs, students were provided with immediate help, which identified correctness and logic 
errors and assisted them to fix these errors. Similar approaches were used to better support stu-
dents’ programming in real-time (e.g., Ala-Mutka, Uimonen, & Jarvinen, 2004; Vujošević-
Janičić, Nikolić, Tošić, & Kuncak, 2013), as well as to auto-grade and find cheating in student 
assignments (e.g., Leach, 1995; Tryer, 2001; Wang, Su, Ma, Wang, & Wang, 2011). In recent 
years, educational data mining (EDM) and learning analytics (LA) have emerged as promising 
methodologies for educational research. EDM and LA are inter-disciplinary approaches to analys-
ing data sets originated in educational contexts, using various methods and tools (cf. Siemens & 
Baker, 2015). These methods were incorporated into the line of research discussed here, and us-
ing these techniques, some new and exciting metrics have been added to code-analyzing, includ-
ing more complex structure-based features, as well as variables measuring student-computer in-
teraction (e.g., Berland, Martin, Benton, Smith, & Davis, 2013; Blikstein, 2011; Taherkhani & 
Malmi, 2013; Vihavainen, Luukkainen, & Kurhila, 2013). In this paper, we take an EDM ap-
proach, in particular applying clustering analysis and building a prediction model, based on a 
comprehensive set of software metrics for both quality and security. 

Quality metrics 
There has been a lot of research in recent years about software metrics, however with no aggre-
gated knowledge about which metrics are more suitable to be used with which research question 
(cf. Kitchenham, 2010). As the main purpose of the current study was to explore the way novice 
students and experienced teachers learn a new topic (cyber security) – which also involves learn-
ing a new programming language (Python) – we chose to focus on software metrics derived from 
the standards of that language. Applying their acquired programming skills later in their working 
life will require current-students following some kind of style guides (for example, the ones 
adopted by the organization they would work for), hence the importance of this kind of measure. 
Therefore, sticking to coding standards/conventions of a given language is an important step 
within that language learning process (Pádua, 2010); this is most relevant with the modern pro-
gramming languages, e.g., Java, which are more trusting and that rely on the programmer to bul-
let-proof her or his own code (Zaidman, 2004). 
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Considering the above, the Style Guide for Python Code (PEP 8) was used as the basis to the met-
rics involved in the current study. It is important to emphasize that keeping in mind coding style 
was not a goal of the courses which the participant teachers/students took, nor was it learned dur-
ing these courses. 

Security metrics 
As mentioned earlier, the context of the current study is teachers and students who learn cyber 
security. Hence, it is not sufficient to consider only program quality, as security measures are 
mostly relevant as well. Obviously, unlike quality metrics – which have been extensively dis-
cussed for almost half a century – security metrics have been given attention only lately. But like 
quality metrics, there is a wide range of interpretations and meanings for the term “security met-
rics” (Jansen, 2010; Savola, 2009). 

Consistent with the approach based on which quality metrics were chosen for this study, security 
measures too are based on standards of a specific programming language. However, as there are 
yet no such standards for Python, we referred to the commonly used C++ Secure Coding Stand-
ard, by Carnegie Mellon University’s CERT (SEI CERT C++ Coding Standard, 2015). C++ 
seems to be a good choice, as both languages are multi-paradigm (object oriented and procedur-
al). Furthermore, Python “is a mixture of the class mechanisms found in C++ and Modula-3” 
(The Python Guide, n.d.). Full details on both quality and security specific metrics are discussed 
in the following section, under Feature Engineering. 

Methodology 
Participants and Data 
Participants in this study were 11th- and 12th-grade students (N=31) from two Israeli high-
schools (one is located in a town in the outskirts of Central Israel, the other is located in the 
southern part of the country), 17-18 years old; and high-school computer science teachers (N=18) 
from different parts of Israel, 31-53 years old. The participating students were taught by two of 
the participating teachers.  

Participant teachers attended one of two dedicated programs in cyber security, sponsored by the 
Israeli Ministry of Education, held between June 2012 - March 2013 and September 2013 - Janu-
ary 2014 (each teacher attended only one of these programs); this was done as part of their train-
ing to teach the topic the following year. The participant students took a curriculum-based cyber 
security program, as part of their computer science studies, during 2012/3 school year. Both of 
the programs had taught programming in Python. Designed in 1990, Python is an open-source, 
interactive, high-level programming language that supports multiple programming paradigms and 
offers high-level data structures (Sanner, 1999). It is free to use (even for commercial purposes) 
and runs across multiple platforms (including Windows, Linux, Unix, and Mac OS X). Due to its 
extreme power and suitability to large-scale projects, it has become the default language for Web 
security applications. In addition, as it is easy to learn and easy to use, Python has become one of 
the most popular introductory teaching languages (cf. Guo, 2014). 

During these programs, the teachers and the students were assigned with programming tasks. In 
both cases, they started working on the tasks during class and continued it at home. All assign-
ments had due dates. The solutions to these tasks were collected and analyzed. Overall, 109 
source files were collected (68 were written by the teachers, 41 by the students), including a total 
of 6246 code lines. The teachers were assigned four different exercises; each focused on a differ-
ent aspect of network programming using client-server architecture: 



Software Quality and Security 

128 

1. UDP echo server – UDP (User Datagram Protocol) is a connectionless protocol located 
on the “Transport Layer” of the OSI (Open Systems Interconnection) model. An echo 
server receives a string from a client and sends that string back to the client. In this exer-
cise, the teachers were asked to develop an echo server using the UDP protocol. 

2. Basic TCP command server – TCP (Transmission Control Protocol) is a connection-
oriented protocol located on the “Transport Layer” of the OSI model. In this exercise, the 
teachers were asked to build a server that received TCP messages, using an application 
protocol that they design, and performed specific commands like sending the name of the 
server, sending a static number, and more.  

3. Advanced TCP command server – This exercise is an enhancement of the previous one, 
the teachers were asked to add support for additional commands (also included the ex-
pansion of the application protocol) to the server such as retrieving date and time from 
the server, performing calculations on given numbers, and more. 

4. Web server – A web server is a TCP based application, which accepts HTTP (Hyper Text 
Transfer Protocol) requests and returns relevant HTTP responses. The HTTP responses 
can include different content types such as HTML, pictures, video content or error mes-
sages. In the exercise, the teachers were asked to build a program and parse HTTP re-
quest. In case of a valid file request the web server sent the content of the file encapsulat-
ed in a HTTP message with valid headers.  

The students were assigned three different tasks; each focused on a different aspect of network 
programming using client-server architecture: 

1. UDP echo server – An echo server receives a string from a client and sends that string 
back to the client. In this exercise, the students were asked to develop an echo server us-
ing the UDP protocol. 

2. Advanced TCP command server – In this exercise, the students were asked to build a 
server that received TCP messages, using an application protocol that they designed, and 
performed basic commands like sending the name of the server, sending a static number 
and advanced commands such as retrieving date and time from the server or performing 
calculations on given numbers. This exercise was a combination of both the second and 
the third exercises done by the teachers.  

3. TCP-based Chat – A chat is a way of transferring messages between Internet users in a 
real-time manner. In the exercise, the students needed to design and implement a TCP 
based chat protocol that supported sending messages to a specific user or group and man-
aging chat rooms. 

Data is summarized in Table 1. Difference in assignments is due to the nature of the programs: 
While the teachers—as learners—participated in a full, planned-ahead training, the students had 
studied the subject as part of their regular school duties; therefore, the teachers—as instructors—
were acting under the school schedule limitations, hence had time for only three tasks for their 
students to take. 

During the pre-processing stage, we encountered tasks that were submitted by pairs or triples. In 
cases in which the same pair/triple had submitted all of the exercises during the program – we 
assigned this group’s submissions to one of the group members, arbitrarily, omitting the other 
group members from the analysis. In cases in which pairs/triples had changed over the course of 
the program, we arbitrarily chose one representative for each submission and assigned this sub-
mission to her or him solely. Therefore, number of represented participants in the analysis was 
decreased to 17 teachers and 15 students, as shown in Table 1. 
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Table 1: Dataset description 
Group N Unique 

exercises 
Source 
files 

Code lines 

Full population 

Teachers 18 (9 males, 9 females) 4 68 3032 

Students 31 (29 males, 2 females) 3 41 3214 

Total 49 5 109 6246 

After pairs/triples reduction 

Teachers 17 (9 males, 8 females) 4 60 2831 

Students 15 (14 males, 1 female) 3 27 1878 

Total 32 5 87 4709 

Feature Engineering 
Overall, we have engineered 32 features of three categories (details about the features are follow-
ing):  

• General features. A few general features were calculated for each source file, measuring, 
among other metrics, volume and documentation. 

• Quality features. These features measure the code quality, based on the Style Guide for 
Python Code (PEP 8).  

• Security features. In cyber security, vulnerability is a weakness that allows an attacker to 
perform actions not intended by the creator/owner of the application/system. As men-
tioned above, security-related topics were derived from CERT C++ Secure Coding 
Standard (which describes code-based vulnerabilities in C++). Topics related to the pre-
processor were filtered out from the security standard, as Python does not have a prepro-
cessor. Also, topics that were relevant to specific C/C++ functions not used in Python 
were filtered out.  

Both PEP 8 and CERT’s standards are widely used in code evaluation. While the programming 
features were automatically extracted using a standard code analysis tool, as described below (see 
Quality Features), the security features were extracted using scripts written by the research team. 
All the features are measured using a static analysis, i.e., the code is analyzed without actually 
executing the programs. 

General features (6 Features) 
For each source file, the general features are the following: 

• Number of Statements, measuring the code volume; 
• Number of Comment Lines; 
• Documentation Rate, computed as the ratio of Number of Comment Lines to the Number 

of Statements; 
• Number of Lines (including statements, comments and empty lines); 
• File Name Length (number of characters; excluding the extension.py); 
• File Name Meaningfulness –represents whether the file name hints on what the code is 

implementing. The values are: 1 – file name is not meaningful at all (e.g., 1.py, from 
which one cannot tell anything about the program implemented in this file); 2 – partly 
meaningful (e.g., Client.py, which does not explain to which application/protocol this 
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code is a client); 3 – very meaningful (e.g., ChatClientTCP.py, which means that the pro-
gram implemented is a client of a chat program and that the chat protocol uses TCP as its 
transfer protocol). The values were given jointly by the two authors upon agreement. 

Quality features (20 features) 
These features were automatically extracted by running Pylint (http://pylint.org), a common 
source code bug and quality checker for Python which follows PEP 8 style guide. Pylint defines 
five categories of standard violations/errors, each of which consists of a few measures: 

(1) Convention (C; 18 measures). Conventions are a set of guidelines that recommend pro-
gramming style, practices, and methods for each aspect of a program. These guidelines 
are mainly focused on software structural quality. Convention measures indicate a stand-
ard violation, for example, when the name of an attribute/class/function/variable does not 
match a regular expression defined in the standard; 

(2) Warning (W; 61 measures). This type refers to Python-specific problems, that is, not 
matching Python’s best practices. Such problems may cause bugs in run time. For exam-
ple, the existence of unused import from wildcard import; 

(3) Error (E; 32 measures). This indicates probable bugs in the code that relate to general 
programming concepts. For example, the use of a local variable before its assignment; 

(4) Refactor (R; 15 measures). This means a “bad smell” code. Code refactoring (also known 
as decomposition) is the process of restructuring existing computer code without chang-
ing its external behaviour, mainly for reducing its complexity, easing its readability, and 
improving its maintainability. An example to this violation might be a function or a 
method which takes too many variables as input; 

(5) Fatal. This is triggered if an error occurred which prevented Pylint from processing the 
code. Since fatal messages represent errors in Pylint processing and not in the source file 
itself, we excluded them from this study. 

Pylint scans the code and returns a list of measures for which violations/errors were found, along 
with their count (a 0-value was considered for non-triggered measures). Based on Pylint output, 
the following features were computed under each category: 

• Mean Count (C/W/E/R) – for each category, count of violations/errors was averaged 
across all this category’s measures. 

• Normalized Mean Count (C/W/E/R) – for each category, Mean Count divided by the 
code size (Number of Statements); 

• Rate of Triggered Measures (C/W/E/R) – for each category, number of triggered 
measures divided by total number of measures in this category; 

• Triggered Category (C/W/E/R) – for each category, this feature indicates whether at least 
one measure of it was triggered. 

• Normalized Triggered Category (C/W/E/R) – Triggered Category, normalized by the 
code size (Number of Statements). 

Security features (6 features) 
As mentioned above, security features are derived from CERT C++ Secure Coding Standard. The 
following are the features extracted, all are binary, indicating whether the relevant mechanism 
was implemented (1) or not (0). An implemented mechanism (i.e., a 1-value) is an indication of 
the programmer’s attempt to protect the code from potential security vulnerabilities; pay attention 
that the last feature, Client-Side-Only Security, refers to a bad practice (security check should 
always be done at least on the server-side), hence its meaning is reversed and for it a 1-value de-
notes a possible security vulnerability. 
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• Input Validation (the process of ensuring that a program operates on clean, correct and 
expected input); 

• Anti-Spoofing Mechanism (spoofing attack is a situation in which an attacker masquer-
ades as another entity by sending specially crafted data that seems as it was send from the 
legitimate source); 

• Bound Checking (any method of detecting whether a variable is within some range be-
fore it is used. It is usually used to ensure that a number fits into a given data-type, or that 
an array index is within the bounds of a given array); 

• Checking for Errors (not checking return codes for errors can cause logical security 
bugs/crashing of the program that can cause Denial of Service attacks). 

• Sensitive Data Encryption; 
• Client-Side-Only Security (a scenario in which the server relies on protection mecha-

nisms placed on the client side only. In such cases, an attacker can modify the client-side 
behavior to bypass the security mechanisms, which can lead to unauthorized, not intend-
ed interactions between the client and the server). 

For the participant-level analysis (descriptive statistics, hierarchical tree), each feature was aver-
aged across each participant’s source files. 

Results 
We first present descriptive statistics of the software metrics (general, quality, and security). 
Then, we present the results of the hierarchical clustering that was run on the full, combined pop-
ulation, in order to examine a data-driven partition of it based on the metrics. Finally, we build a 
prediction model at the code-level, for examining whether the software metrics can differentiate 
between teachers’ and students’ codes. 

Descriptive Statistics 
As described above, 60 source files of 17 teachers and 27 source files of 15 students (after reduc-
ing due to submissions in pairs/triples) were analyzed, and 32 software metrics were computed 
for each source file. Then, values of the different metrics were averaged for each participant 
across all of her or his source files (analysis at the code-level will be presented in Teacher/Student 
Classification). We will now present a comparison between students’ and teachers’ feature val-
ues. 

General features 
Means (and standard deviations) of the general features for teachers and students are summarized 
in Table 2, along with two-tailed t-test results of comparing between the two groups. Differences 
in means of four (out of six) general metrics are significant: Number of Statements (p<0.05), 
Number of Lines (p<0.05), File Name Length (p<0.01), and File Name Meaningfulness (p<0.01); 
on average, students’ programs were longer than the teachers’, and teachers’ file names were 
longer and more meaningful than the students’. The difference regarding code size (Number of 
Statements and Number of Lines) might indicate the teachers have a better grasp of the concept of 
programming with Pyhton, as “Python is a very expressive language, which means that we can 
usually write far fewer lines of Python code than would be required for an equivalent application 
written in, say, C++ or Java” (Summerfield, 2010,  p. 1). 

Regarding file names’ length and meaningfulness – teachers demonstrate a better practice of file 
naming, which might be a result of their experience in programming and/or teaching computer 
science classes. No significant differences were found between the means of the two documenta-
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tion-related features. Average Documentation Rate was 0.1, a reasonable documenting practice in 
Python. 

 

Table 2: Descriptive statistics, two-tailed t-test results for general features (one decimal 
place representation unless mean<0.1); grey-shaded rows have significant difference 

Variable Mean (SD) 
N=32 

Mean (SD), 
Teachers, N=17 

Mean (SD), 
Students, N=15 

t(30)a 

Number of Statements 51 
(28.3) 

40.5 (19.7) 62.9 (32.3) 2.3*, 
df=22.6b 

Number of Comments 6.1 (7.4) 5.5 (7.8) 6.8 (7.0) 0.5 

Documentation Rate 0.1 (0.1) 0.1 (0.2) 0.1 (0.1) -0.4 

Number of Lines 56.9 (29.6) 45.4 (23.8) 69.7 (30.9) 2.5* 

Name Length 10.8 (5.1) 12.9 (4.0) 8.4 (5.2) -2.8** 

Name Meaning 1.3 (0.5) 1.6 (0.4) 0.9 (0.5) -4.3** 
* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 
b Levene’s test for equality of variance was significant, hence equal variances not assumed. 

Quality features 
Means (and standard deviations) of the software quality features for teachers and students are 
summarized in Table 3, along with two-tailed t-test results of comparing between the two groups. 

Means of eight (out of twenty) quality metrics are significantly different between groups, all are 
of the convention and warning categories: Mean Count C, Mean Count W, Normalized Mean 
Count C, Normalized Mean Count W, Rate of Triggered Measures C, Rate of Triggered 
Measures W, Trigged Category W, and Normalized Triggered Category C (all at p<0.01, except 
Triggered Category W, at p<0.05). On average, the students had more convention- and warning-
type violations than the teachers (with only one exception, Normalized Triggered Category, 
which will be addressed immediately). As convention guidelines help improve code readability 
and make software maintenance easier, these differences might indicate that the teachers, based 
on their experience, migrate rather smoothly to programming in a new language. 

Pay attention to the opposite direction difference between students and teachers in Normalized 
Triggered Category C. This is a direct result of Triggered Category C getting a value of 1 for both 
students and teachers and of Number of Statements being larger for students that it is for teachers 
(as presented in General Features); the variable Normalized Triggered Category C is a ratio of 
these two variables. 
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Table 3: Descriptive statistics, two-tailed t-test results for quality features  
(one decimal place representation unless mean<0.1 or difference needs to be shown);  

grey-shaded rows have significant difference 
Variable Mean (SD) 

N=32 

Mean (SD), 
Teachers 

N=17 

Mean (SD), 
Students 

N=15 

t(30)a 

Mean Count C 72.3 (56.7) 40.8 (28.8) 108.0 (60.0) 4.0**, df=19.6b 

Mean Count W 56.9 (70.9) 20.7 (37.6) 97.8 (78.4) 3.5**, df=19.5b 

Mean Count E 1.4 (1.5) 1.3 (1.0) 1.5 (2.0) 0.5, df=19.5b 

Mean Count R 0.2 (0.3) 0.1 (0.4) 0.2 (0.3) 0.6 

Normalized Mean Count C 0.11 (0.04) 0.09 (0.04) 0.13 (0.03) 3.6**, df=26.7b 

Normalized Mean Count W 0.02 (0.03) 0.01 (0.02) 0.04 (0.03) 2.9**, df=21.6b 

Normalized Mean Count E – c – c – c 0.05 

Normalized Mean Count R – c – c – c 1.1 

Rate of Triggered Measures C 0.4 (0.1) 0.3 (0.1) 0.4 (0.1) 4.5** 

Rate of Triggered Measures W 0.05 (0.04) 0.03 (0.03) 0.07 (0.04) 3.5** 

Rate of Triggered Measures E 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) -0.1, df=21.6b 

Rate of Triggered Measures R 0.01 (0.02) 0.01 (0.02) 0.01 (0.01) 0.7 

Triggered Category C 1 (0) 1 (0) 1 (0) N/A 

Triggered Category W 0.7 (0.4) 0.6 (0.4) 0.9 (0.3) 2.7*, df=28.1b 

Triggered Category E 0.4 (0.3) 0.4 (0.3) 0.4 (0.4) -0.6, df=23.8b 

Triggered Category R 0.2 (0.3) 0.1 (0.3) 0.2 (0.3) 1.2 

Normalized Triggered Category C 0.03 (0.02) 0.04 (0.02) 0.02 (0.01) -3.1** 

Normalized Triggered Category W 0.02 (0.01) 0.02 (0.02) 0.02 (0.01) 0.6 

Normalized Triggered Category E 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) -1.1 

Normalized Triggered Category R – c – c – c 0.2 
* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 
b Levene’s test for equality of variance was significant, hence equal variances not assumed. 

c Mean value was smaller than 0.01. 

Security features 
Overall, both teachers and students showed low levels of implementing security mechanisms. 
Results are summarized in Table 4. Both teachers and students implemented none of Anti-
Spoofing Mechanisms and Sensitive Data Encryption. As for Input Validation and Checking for 
Errors – on average, students implemented more mechanisms than teachers regarding these fea-
tures (p<0.05). This might be a result of the teachers, learning from their own fresh experience, 
emphasizing these subjects to their students. 

As for Client-Side-Only Security, recall that a 0-value for this feature denotes a proper security 
implementation. As seen from Table 2, mean value for this feature was 0 for the teachers; howev-
er, as the teachers had barely implemented any security mechanism, this value cannot be inter-
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preted as a good security practice. The students, with relatively a high mean value of Client-Side-
Only Security (0.5, significantly different from the teachers’ mean, at p<0.01), demonstrate poor 
security design that is focused mostly at the client-side. 

Table 4: Descriptive statistics, two-tailed t-test results for security features (one decimal 
place representation unless mean<0.1); grey-shaded rows have significant difference 

Variable Mean (SD) 

N=32 

Mean (SD), Teach. 
N=17 

Mean (SD), 
Stud. N=15 

ta 

Input Validation 0.06 (0.17) 0 (0) 0.13 (0.23) 2.3*, df=14.0 

Anti-Spoofing Mecha-
nismb 

0 (0) 0 (0) 0 (0) N/A 

Bound Checking 0.10 (0.20) 0.04 (0.12) 0.17 (0.25) 1.9, df=20.1 

Checking for Errors 0.18 (0.35) 0.04 (0.12) 0.33 (0.45) 2.5*, df=15.8 

Sensitive Data Encryp-
tion 

0 (0) 0 (0) 0 (0) N/A 

Client-Side-Only Securi-
tyc 

0.21 (0.42) 0 (0) 0.5 (0.52) 3.3**, 
df=11.0 

* p<0.05, ** p<0.01. 
a Levene’s test for equality of variance was significant, hence equal variances not assumed. 
b For this case, for students, N=12. c For this case, for teachers, N=16, and for the students, N=12. 

Hierarchical Clustering of the Participants 
In order to explore similarities between the participants, with regards to their code metrics, we 
used a hierarchical cluster analysis. This method makes a partition of the population into groups 
where subjects in each group are similar (or closer) to each other than subjects in other groups, by 
terms of a given metrics; this is a bottom-up, unsupervised method that makes no prior assump-
tions on the way the data is categorized (cf. Kaufman & Rousseeuw, 2009). In recent years, and 
mainly since the emergence of the educational data mining (EDM) and learning analytics (LA) 
approaches to educational data, cluster analysis has been extensively used in educational research 
(cf. Antonenko, Toy, & Niederhauser, 2012; Baker & Siemens, 2014; Peña-Ayala, 2014; Romero 
& Ventura, 2010). As our purpose was to discover hidden patterns in the data, no assuming on 
any a-priori partition of the population, we find this approach most suitable to our needs; the met-
rics by which the population is partitioned is based on the calculated metrics. We used Ward’s 
method (Ward, 1963) for clustering by Pearson correlation. Features were standardized using Z-
scores before clustering. Analysis was computed using SPSS 18. A dendrogram representing the 
clustering process is presented in Figure 1. The vertical lines determine which participants were 
grouped together and at which stage of the algorithm (from left to right). As can be clearly seen, 
the process resulted with a division to two clusters, holding 9 and 23 participants. The small clus-
ter holds teachers only; the large one holds all the students (15) and 8 additional teachers. Exam-
ining mean feature values between the two clusters, and comparing these with the descriptive sta-
tistics presented in previous section, raises some interesting insights.  
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First, we will examine mean differences between the clusters and will compare these results with 
mean differences between students and teachers (presented in the previous section). These com-
parisons are summarized in Table 5, where each variable is noted for significance/insignificance 
difference when its mean is compared between clusters and between students/teachers. Full re-
sults of mean comparison between the two clusters are presented in Tables 6-8. We will now fo-
cus only on these variables the means of which were found to be significantly different when 
comparing between cluster and were not significantly different when comparing between teach-
ers/students, and vice versa. 

 

  

 
Figure 1: Dendrogram of the hierarchical clustering process. X-axis represents 

distance between clusters 
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Table 5: Significance (p<0.05, marked with +) or insignificance (-) mean difference 
 in two-tailed t-tests regarding the research variables 

Variable Comparing 
Students, 
Teachers 

Comparing Clus-
ters 

General Features 

Number of Statements + - 

Number of Comments - - 

Documentation Rate - - 

Number of Lines + - 

Name Length + + 

Name Meaning + + 

Quality Features 

Mean Count C/W + + 

Mean Count E/R - - 

Normalized Mean Count C/W + + 

Normalized Mean Count E/R - - 

Rate of Triggered Measures C/W + + 

Rate of Triggered Measures E - - 

Rate of Triggered Measures R - + 

Triggered Category C N/A N/A 

Triggered Category W + + 

Triggered Category E - - 

Triggered Category R - + 

Normalized Triggered Category C + - 

Normalized Triggered Category W/E/R - - 

Security Features 

Input Validation + + 

Anti-Spoofing Mechanism N/A N/A 

Bound Checking - + 

Checking for Errors + + 

Sensitive Data Encryption N/A N/A 

Client-Side-Only Security + + 

 



Boutnaru & Hershkovitz 

137 

Significant Difference between Clusters, not between 
Teachers/Students 
Interestingly, means of two of the Refactor features are significantly different when comparing 
between clusters, both refer to the overall triggering of measures under this category: a) Rate of 
Triggered Measures R, with t(df=20.5)=2.2, at p<0.05; and b) Triggered Category R, with 
t(df=24.4)=2.2, at p<0.05. Levene’s test for equality of variance resulted with a significant result 
in both cases, hence equal variances were not assumed. Recall that none of the Refactor features 
was significantly different between teachers and students. In both cases, the means in the teach-
ers-only cluster were lower than the means in the mostly-students cluster (i.e., the teachers had 
demonstrated better security design). As Refactor measures refer to a “bad smell” code, the dif-
ferences in this category might indicate that the teachers in the teacher-only cluster are more ex-
perienced in regulating their own programming and recognizing seemingly-suspicious code than 
the students and the other teachers. 

Bound Checking was also found significantly different between the two clusters, with 
t(df=19.1)=2.2, at p<0.05 (again, equal variances were not assumed as for Levene’s test signifi-
cant result). Here, mean value for the teachers-only cluster is lower than the mostly-students clus-
ter, indicating poorer security design of members of the former comparing to the latter. This is 
probably because, as was shown in the previous section, the Bound Checking security mechanism 
was mostly implemented by the students. 

Overall, these differences highlight that the teacher-only clusters hold an important subset of the 
teachers, the member of which differ not only from the students, but also from their other peers. 
The data-driven partition taken here made it possible to distinguish between the two groups based 
not on their role in class, but rather on their actual code-writing measures, hence finding some 
hidden patters. 

Significant Differences between Teachers/Students That Became 
Non-significant 
Means of two of the General features previously found significantly different between teach-
ers/students are now non-significant when comparing between clusters: Number of Lines, Number 
of Statements, and Normalized Triggered Category C. As Normalized Triggered Category C is 
the ratio of Triggered Category C – for which all of the participants got a value of 1 – to Number 
of Statements, and as Number of Statements and Number of Lines are highly correlated– with 
Pearson’s r=0.983, at p<0.01 – these three features are related. Hence, the teachers-only cluster 
and the mostly-students cluster do not differ from each other with regards to their general code 
characteristics. 

The cluster analysis resulted with a clear distinction between two groups of learners. Specifically, 
it found a sub-group of the teachers that is different from the rest of the teachers – and along with 
that from all the students – mostly in its quality features (convention-, warning-, and refactor-
related). This subgroup’s members produce code that is higher in its quality measures compared 
to the other participants; this might indicate that teachers in the teacher-only cluster facilitate their 
learning of new material differently than the rest of the participants. To this end, gender issues 
might be relevant, as the teachers-only cluster holds 2 female teachers and 7 male teachers, while 
the mostly-students cluster holds 2 male teachers and 6 female teachers (as mentioned before, 
almost all participant students were males, making any gender-wise comparison impossible). This 
brings to mind an interesting recent finding about gender differences in adopting computer cur-
ricular changes. Investigating a rapid change in CS curriculum in New Zealand, Thompson et al. 
(2013) found that only 73% of the female teachers intended to use the new programming and CS 
standards presented in the new curriculum, compared to 91% of the male teachers. 



Software Quality and Security 

138 

Table 6: Mean comparison (two-tailed t-test) for the general features among  
the two clusters (one decimal place representation unless mean<0.1);  

grey-shaded rows have significant difference 
Variable Mean (SD), Most-

ly-students Clus-
ter, N=23 

Mean (SD), 
Teachers-
only Clus-
ter, N=9 

t(30)a 

Number of Statements 56.0 (30.6) 38.3 (16.0) -0.8 
Number of Comments 6.1 (7.6) 6.2 (6.2) -0.04 
Documentation Rate 0.08 (0.07) 0.2 (0.2) -1.4, df=8.9b 
Number of Lines 62.2 (31.1) 43.1 (20.7) 1.7 
Name Length 9.0 (4.6) 15.2 (3.2) -3.7** 
Name Meaning 1.1 (0.5) 1.7 (0.4) -2.9* 
* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 
b Levene’s test for equality of variance was significant, hence equal variances not assumed. 

 

Table 7: Mean comparison (two-tailed t-test) for the quality features among  
the two clusters (one decimal place representation unless mean<0.1);  

grey-shaded rows have significant difference 
Variable Mean (SD), 

Mostly-students 
Cluster, N=23 

Mean (SD), 
Teachers-only 
Cluster, N=9 

t(30)a 

Mean Count C 90.7 (56.7) 25.5 (13.4) 5.2**, df=27.2 
Mean Count W 75.9 (75.4) 8.2 (13.3) 4.1**, df=25.2 
Mean Count E 1.3 (1.7) 1.6 (1.0) -0.4 
Mean Count R 0.2 (0.4) 0.05 (0.1) 1.8, df=27.9 
Normalized Mean Count C 0.1 (0.03) 0.06 (0.03) 6.1** 
Normalized Mean Count W 0.03 (0.04) 0.003 (0.004) 3.8*, df=23.4 
Normalized Mean Count E 0.0 (0.001) 0.001 (0.001) -0.8 
Normalized Mean Count R 0.0c (0.0c) 0.0c (0.0c) 2.0, df=26.7 
Rate of Triggered Measures C 0.4 (0.08) 0.3 (0.05) 4.1** 
Rate of Triggered Measures W 0.07 (0.04) 0.02 (0.02) 3.3* 
Rate of Triggered Measures E 0.01 (0.01) 0.02 (0.003) -0.8, df=27.3 
Rate of Triggered Measures R 0.01 (0.02) 0.002 (0.004) 2.5*, df=27.2 
Triggered Category C 1.0 (0.0) 1.0 (0.0) N/A 
Triggered Category W 0.8 (0.4) 0.5 (0.4) 2.4* 
Triggered Category E 0.4 (0.4) 0.5 (0.1) -1.0, df=29.8 
Triggered Category R 0.2 (0.3) 0.05 (0.1) 2.5*, df=29.8 
Normalized Triggered Category C 0.03 (0.02) 0.04 (0.01) -1.2 
Normalized Triggered Category W 0.02 (0.01) 0.02 (0.02) 0.2 
Normalized Triggered Category E 0.008 (0.01) 0.01 (0.01) -1.1 
Normalized Triggered Category R 0.003 (0.01) 0.0c (0.0) 1.3 

* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 
b Levene’s test for equality of variance resulted with a significant result, hence equal variances not 
assumed. 
c Value was smaller than 0.01. 
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Table 8: Mean comparison (two-tailed t-test) for the security features among  
the two clusters (one decimal place representation unless mean<0.1);  

grey-shaded rows have significant difference 
Variable Mean (SD), Mostly-

students Cluster, 
N=23 

Mean (SD), 
Teachers-only 
Cluster, N=9 

ta 

Input Validation 0.09 (0.2) 0.0 (0.0) 2.2*, df=22 

Anti-Spoofing Mechanismb 0.0 (0.0) 0.0 (0.0)   N/A 

Bound Checking 0.1 (0.2) 0.01 (0.04) 2.4*, df=25.5 

Checking for Errors 0.2 (0.4) 0.0 (0.0) 3.0*, df=22 

Sensitive Data Encryption 0.0 (0.0) 0.0 (0.0) N/A 

Client-Side-Only Securityc 0.3 (0.5) 0.0 (0.0) 2.9*, df=18 
* p<0.05, ** p<0.01. a Levene’s test for equality of variance resulted with a significant result, hence 
equal variances not assumed. 
b For this case, for the mostly-students cluster, N=20. 
c For this case, for the mostly-students cluster, N=19.  

Code Writer Prediction Model 
As a final step, and in order to highlight the findings from yet another angle, we tried to build a 
classifier, at the code-level, that will predict whether a program was submitted by either a student 
or a teacher. In this case, the analysis is supervised, as we know ahead which code was written by 
a student and which was written by a teacher, and our goal is to predict it based on the code met-
rics. That is, we would like to build a classifier (a binary predictor) that, based on a code’s fea-
tures, will predict who wrote this code. For doing this, we chose to use a decision tree model, 
mostly because of it being simple and easily interpretable (cf. Quinlan, 1996); decision trees have 
been extensively used in the educational research in recent years (cf. Baker & Siemens, 2014; 
Peña-Ayala, 2014; Romero & Ventura, 2010). 

As detailed in Participants and Data section, 
87 code source files were used. This set of 
codes, along with their features (at this 
stage, back to code-level calculation of fea-
tures), had served for the prediction model 
building. We developed a decision tree 
model, using RapidMiner 5.3 (Mierswa, 
Wurst, Klinkenberg, Scholz, & Euler, 2006), 
with its default parameters. Forward feature 
selection was implemented manually. Per-
formance was tested using kappa and was 
validated using leave-one-out cross-
validation. 

The best model found, presented in Figure 2, 
is relatively simple, having only two fea-
tures – Normalized Mean Count C, and 
Normalized Triggered Category E – three 

 
Figure 2: Best prediction model 

(S=Student, T=Teacher) 
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leaves and a total height of two. This model has a very good kappa value of 0.751, indicating on 
its high level of generalizability. 

Based on this tree, a code with Normalized Mean Count C>0.118 is predicted to be written by a 
student. A code with a lower value of Normalized Mean Count C is then tested for Normalized 
Triggered Category E; higher values (>0.018) are predicted to be written by students, lower val-
ues (≤0.018) are predicted to be written by teachers. This model highlights the already known 
difference in convention violations between teachers and students. However, it also highlights an 
interaction between the convention feature and a feature that refers to errors. Error-related fea-
tures did not show significance earlier. This interesting result suggests that students and teachers 
that are relatively good in convention-keeping, might still pay attention differently to probable 
bugs. Here again, teachers might use their experience in programming (or in teaching program-
ming) for thinking about different scenarios and extreme cases that might lead to bugs. 

It is important to emphasize that security-related features, as well as general features, are absent 
from the model, highlighting the fact that students and teachers are mostly differed by the quality 
of their code. The non-differentiability of the general features might indicate that the submitted 
codes are straightforward solutions to relatively simple tasks; the non-differentiability of the secu-
rity features is probably related to the very low levels of security mechanisms implemented by 
both students and teachers, as was previously shown; therefore, the only inherent meaningful dif-
ference at the code-level remains in the quality features, indicating the main advantage experi-
enced teachers have over students when it comes to studying a new programming language. 

Discussion 
In this study, we analyzed students’ and teachers’ computer programs for both quality and securi-
ty; the programs were given as exercises in a cyber security training, a topic new for both popula-
tions. Software quality measures indicate that both groups have violations/errors, mainly in the 
Python-specific features (convention, warning), which demonstrate the difficulty of learning a 
new programming language. Students’ (obviously novices) difficulties are expected; teachers’ 
difficulties may be looked at in two opposite ways: on the one hand, teachers did better than stu-
dents in all software quality metrics, demonstrating their experience and expertise; on the other 
hand, the very existence of these violations/errors may hint that the teachers had struggled with 
the new material just like novices do. In this light, our findings support Liberman, Ben-David 
Kolikant, and Beeri’s (2012) preliminary results about the “regressed experts”, stating that in 
such scenario, the teachers practice some elements of novices but use their experience as a lever-
age to improve knowledge in the new content. Recall that about half of the teachers were clus-
tered together with the students when defining similarity based on the software metrics (using 
hierarchical clustering). This group of teachers, the members of which proved a slower adaptation 
to the new curriculum, might demonstrate the problem in the training of secondary school com-
puter science (CS) teachers. As Ginat (2000) put it, “many teachers remained with a rather nar-
row perception of CS. In particular, many still perceive the teaching of introductory CS as tutor-
ing of language syntax and technicalities, and fail to recognize the importance of design and anal-
ysis consideration.” While Liberman, Ben-David Kolikant, and Beeri’s description relates to our 
surface-level findings (based on descriptive statistics), shedding light on the more severe problem 
presented by Ginat was enabled by using a bottom-up analysis approach (based on data mining). 
This demonstrates the advantage of our multi-view approach. Additionally, the prediction model 
highlighted some further fine-grained differences between students and teachers, emphasizing the 
role of quality-related features, in which teachers most benefit from their experience. Repeating 
the current study in a larger population is recommended in order to empirically measure the ex-
tent of these two phenomena, both of which are strongly related to the ability of CS teachers to be 
trained in new programming languages, as required in today’s ever-changing curriculum era. 



Boutnaru & Hershkovitz 

141 

Viewed from a broader perspective, these findings shed light on CS education as a lifelong learn-
ing experience. The rapid technological developments over recent years make CS an ever-
changing field, and as a result, people engaged with it are required to be lifelong learners (Fisch-
er, 2000; Guzdial & Weingartn, 1995). Among these are CS teachers who need to be constantly 
updated in order to teach their students the most relevant content. Sometimes, the need to get up-
dated is forced on these teachers as a result of curricular changes. Indeed, lifelong learning has 
been noted as an integral part of CS teacher preparation, side by side with expertise in knowledge 
and in teaching strategies (East, Bentley, Kmoch, Rainwater, & Stephenson, 2011). As we 
showed in this study, it might be advisable to emphasize the need for lifelong learning in CS 
teacher training. This need should also be accompanied by research focusing on the most efficient 
ways for CS teachers to keep updated in content-, technology-, and pedagogy-related topics. 

On top of these two explanations to CS teachers’ training in new material, gender issues might 
explain some differences too, as was pointed out in our findings and was recently found by 
Thompson et al. (2013). As Paechter (2003) suggested, teachers’ reactions to curriculum change 
are strongly related to teacher identities, in specific gender: while female teachers see themselves 
as teachers first, content experts second, for male teachers the order of importance is reversed. 
This observation might dramatically affect teachers’ attitude towards curricular changes. In addi-
tion to demonstrating different attitudes towards changes in the curriculum, compared with their 
male peers (which might, in turn, affect their learning of new material), female CS teachers might 
also learn the new content differently than their male colleagues, due to previously observed gen-
der differences in CS learning (e.g., Beyer, Rynes, Perrault, Hay, & Haller, 2003; Murphy et al., 
2006; Vilner & Zur, 2006). Generally, our finding regarding gender differences is in line with 
many other studies that have pointed out to gender-differences in computer science education (cf. 
Hayes, 2008; Mihalcea & Welch, 2015; Webb & Miller, 2015). These differences should be taken 
into consideration by policy makers and teacher development program leaders, in order to ease 
the processes of female CS teachers adapting to curricular changes. 

Meanwhile, a simple solution might assist both students and teachers to learn in the CS with pro-
gramming tasks: measuring software quality and security metrics in real-time (i.e., while writing 
the code), hence enabling contextual feedback that might result in a better code and promote bet-
ter learning (cf. Ala-Mutka, 2007; Ng, Vee, Meyer, & Mannock, 2006; Truong et al., 2005; Wang 
et al., 2011). Popular IDEs (Integrated Development Environments) already provide integration 
with tools like Pylint (e.g., Emcas, VIM, Eclipse, Komodo, WingIDE, gedit, and pyscripter), so 
using such software might ease the measuring task, as was indeed reported in Robles and Gonzá-
lez-Barahona (2013). This idea is in line with a strand of research that suggested supporting nov-
ice programming learners by adding components during program writing, running or debugging 
(e.g., Brusilovsky, 1994, Egan & McDonald, 2014; Hundhausen & Brown, 2007; Kiesmuller, 
2009). Hence, this is another important direction for further research that might eventually assist 
people to acquire a new programming language more efficiently.  

As our results suggest, codes with higher software quality are not necessarily better secured. 
Overall, codes of the participant teachers were of higher quality comparing to the students’ codes; 
however with regards to the measurable security features, the opposite was observed. In recent 
years, much attention has been put on exploring the relations between software quality metrics 
and software vulnerability; most of these studies have found that the former can predict the latter 
(e.g., Chowdhurry & Zulkernine, 2011; Moshtari, Sami, & Azimi, 2013; Shin & Williams, 2013). 
However, most of these studies were analysing big (in terms of code size) commercial software 
(e.g., Mozilla Firefox, Linux Kernel, Eclipse, etc.) that are usually written collaboratively by 
hundreds, sometimes thousands, of people. Hence, their findings are barely interpretable at the 
programmer level. The current study sheds light on the individual code-writer, so we can con-
clude from it about educating software engineering students and lifelong programming learners. 
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From what we have found, educating in secure programming might probably be done in parallel 
to teaching programming practices. 

Generally, due to the fact that most of the features (quality features and cyber security features) 
shown in the study are relevant to other programming languages (such as C/C++/C#/Java/Ruby), 
our findings might generalize to other environments, and we plan on running similar, extended 
studies in other programming scenarios. 
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