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Abstract 
Learning Object Repositories (LOR) are the result of the activity of hundreds or thousands of 
contributing individuals. It has been shown in a previous work by the author (Ochoa & Duval, 
2008) that LORs have an interesting macro-behavior, mostly governed by long-tailed distribu-
tions. The shape of these distributions provides valuable information for the management and 
operation of LORs.  However, the reason why these distributions appear is not known.  This work 
proposes a simple model to explain this macro-behavior as the consequence of very simple micro-
behavior of individual contributors, more specifically their number, production rate, and lifetime 
in the repository.  This model is formally presented and successfully validated against data from 
existing LORs.  While simple, this model seems to explain most of the large-scale measurements 
in function of the small-scale interactions. Finally, this work discusses the implications that this 
model has in the planning and maintenance of new and existing LORs.  
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Introduction 
The publication of learning materials in online repositories is usually regarded as a simple proc-
ess.  To publish, the contributor provides or uploads the material (or the reference to the mate-
rial), fills some metadata about the material, and then the material is available in the repository 
for others to find and reuse.  The contributor can repeat this process for more materials as desired, 
while he or she is still interested in providing content to the repository.  

These seemingly simple processes that determine the micro-behavior of contributors and con-
sumers give rise to complex macro-behavior at the repository level once the contribution and 
preference of hundreds or thousands of individuals is aggregated (Ochoa & Duval, 2008).  For 
example, some learning object repositories grow linearly while others, having a similar number of 
contributors, grow exponentially.  Also, the number of objects published by a given contributor is 
distributed differently depending on the kind of repository, but always following a long-tailed 

distribution (Anderson, 2006). 
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Unfortunately, there is no research 
available about how the micro-behavior 
of the individuals is related to the ob-
served macro-behavior of Learning Ob-
ject Repositories.  The fields of Bibli-
ometrics and Scientometrics have been 
studying a similar problem: the process 
of paper publication in different venues 
(journals, conferences, repositories, 
etc.).  In these fields, several models 
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have been proposed to attempt to explain the observed patterns in the data.  For example, De 
Price Sola (1976) proposed “Cumulative advantage” as a model to explain the inverse-power law 
distribution, also called Lotka by Coile (1977), observed in the number of papers published by a 
scientist in a given field. Egghe and Rousseau (1995) and Egghe (2005) refine this notion with 
the “success breeds success” model.  However, the models used for scientific publication cannot 
be transferred to learning object publication because one of their main characteristics, the increas-
ing rate of production observed in most successful scientific contributors, has not been observed 
in learning material contributors elsewhere (Ochoa & Duval, 2008).  Nonetheless, the method-
ologies to establish and validate these models will be borrowed and re-used in the present study. 

The present work proposes an initial model to explain the macro-behavior of LORs based on the 
characteristics of their contributor base.  This paper is structured as follows: the modeling section 
presents previous unexplained characteristics of Learning Object Repositories that this work pro-
poses to model.  In the next section the model is formally defined and explained.  The validation 
section studies the model, comparing its predictions against empirical data. The paper ends with a 
discussion of the relevance of this model and further research needed to improve it. 

Modeling the Publication Process 
In a previous work (Ochoa & Duval, 2008), several characteristics of the publication of learning 
objects were measured. That work used data collected from several sources:  

• three Learning Object Repositories (LORp): Ariadne, Connexions and Maricopa Ex-
change; 

• three Learning Object Referatories (LORf): Merlot, Intute and Ferl First;  

• two Open Courseware sties (OCW): MIT OCW and OpenLearn and  

• one Learning Management System (LMS): SIDWeb.   

The findings of that work could be summarized as: 

• LORp and LORf grow in number of objects linearly in two stages (bi-phase linearly), but 
OCW and LMS grow exponentially. 

• Most LORp and LORf grow bi-phase linearly in the number of contributors. OCW and 
LMS grow exponentially. 

• The number of objects published by a given author follows a Lotka distribution with ex-
ponential decay in the case of LORp and LORf.  OCW and LMS present a Weibull dis-
tribution. 

• The rate at which contributors publish materials followed a Log-Normal distribution for 
all the repositories studied. 

• The lifetime of the contributors (time that the contributor remains actively publishing ma-
terial) is distributed exponentially for LORp and LORf and according to a Weibull distri-
bution in the case of OCW and LMS. 

While these findings provided information about how to manage repositories, the quantitative 
study did not explain the connection between those measurements and the reason why they are 
found in the first place.  For example, Connexions, a LORp, has a linear growth in the number of 
objects, but an exponential growth in the number of contributors.  Also, it does not explain how 
the behavior of the contributors (publications rate and lifetime) is related to the behavior of the 
repository (repository growth and distribution of contribution) 
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This work tries to formulate a model that could simulate the observed results with the lowest 
amount of initial parameters. The objective of this model is to understand the relation between the 
micro-behavior (contributors publishing learning objects at a given rate during a given time) and 
the macro-behavior (repositories growing linearly, publication distribution having a heavy tail). 
Finally, this model could help us to adjust the initial parameter and simulate the macro-behavior 
that a hypothetical repository would have. For example, the model will help us to know what type 
of initial factors give rise to exponential growth.  

This model is inspired by the ideas of Huber (2002). Huber modeled the distribution of the 
amount of patents published among inventors using four variables: the Frequency (publication 
rate), the Career Duration (lifetime), the Poissoness (the degree to which they conform to a Pois-
son distribution), and the Randomness. While we use some of his ideas, the methodology used in 
this paper expands that model in two principal ways: 1) our model is capable of generating non-
Lotka distributions, and 2) the predictive scope of our model is larger, including the growth func-
tion and total size. 

Definitions 
The model is based on three factors. Two of them are directly related to the micro-behavior of the 
contributor: the rate of publication and the lifetime.  The third factor is related to the number of 
contributors that a repository has at a given time.  These factors are defined as follows: 

• Publication Rate Distribution (PRD): This specifies how talent or capability is distrib-
uted among the contributor population. Mathematically, PRD(x) is a random variable that 
represents the probability of a contributor to publish one object each x days on average.  
In the case of all the repositories studied in Ochoa and Duval (2008) the Log-Normal is a 
good approximation of this distribution, although any distribution can be set to test 
“what-if” scenarios. 

• Lifetime Distribution (LTD): This specifies the amount of time that different contribu-
tors will be active in the repository. Mathematically, LTD(x) is a random variable that 
represents the probability that a contributor will stay active in the repository for x days.  
Ochoa and Duval (2008) found that Exponential, Log-Normal, and Weibull distributions 
seem to represent different types of contributor engagement. 

• Contributor Growth Function (CGF): This is a repository related factor that, for now, 
cannot be predicted. Mathematically, CGF(x) is a function that represent the number of 
contributors that the repository has after x days.  Ochoa and Duval (2008) found that Bi-
phase linear and Exponential are a good approximation for the contributor growth. 

While the initial factors can be formally defined (distribution functions or growth functions), the 
process to derive a formal model involves non-linear calculations (Huber, 2002) that make it un-
feasible to derive an exact mathematical solution (resulting distribution) that can be easily inter-
preted. Therefore, a numerical computation is used to run the model. This approach, while less 
formal, is very flexible to accommodate a greater range of initial factors.  

The construction of the model can be described as follows:  

1. The period of time, measured in days over which the model is run, is selected.  
2. The Contributor Growth Function (CGF) is used to calculate the size of the contributor popu-

lation at the end of that period.  
3. A virtual population of contributors of the calculated size is created. 
4. For each contributor, the two basic characteristics, publication rate and lifetime are assigned: 
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4.1. First, a publication rate value, generated randomly from the Publication Rate Distribu-
tion (PRD), is assigned to each contributor.  

4.2. Second, a lifetime value, generated randomly from the Lifetime Distribution (LTD) is 
also assigned to each contributor.  

5. Once the virtual contributors’ parameters have been set, each contributor is assigned a start-
ing date. The number of contributor slots for each day is extracted from a discrete version of 
the CGF. Each contributor is assigned randomly to each one of those slots. If the start date 
plus the lifetime of a contributor exceed the final date of the simulation, the lifetime is trun-
cated to fit inside the simulation period.  

Once the simulated population has been created, the model is run. A Poisson process is used to 
simulate the discrete publication of learning materials. The lambda variable required by the Pois-
son process is replaced by the contributor’s publication rate. The process is run for each day of 
the contributor’s lifetime. The result of the model is a list containing the contributors, the number 
of objects that those contributors have published, and the dates in which those publications took 
place. From this data, the macro-behavior of the simulated repository can be extracted in a similar 
way as for real repositories. 

In formal terms (Equation 1), the random variable N, representing the number of objects pub-
lished by each contributor, is equal to the PRD, the random variable representing the rate of pro-
duction of the contributor, multiplied by LTD, the random variable representing the lifetime of 
the contributor in the repository. Given that solving the multiplication of random variables often 
involves the use of the Mellin transform (Epstein, 1948) and the result is not always easily inter-
pretable (Huber, 2002), this multiplication is solved through computation methods. Equation 2 
shows the resulting distribution of N. The probability of publishing k objects is the combined 
probability of each contributor publishing k objects. Given that the production of a contributor is 
considered independent of the production of any other contributor, the combination of probabili-
ties is converted into a product for the Nc contributors. To calculate the probability with which 
the ith contributor publishes k objects, we use the formula of the Poisson process with production 
rate Ri and lifetime Li randomly extracted from their correspondent distributions. This formula 
calculates the probability that the contributor publishes exactly k objects during her lifetime. 

 

   (1) 
 

  (2) 
 

Model Validation 
To validate this model the simulated results are compared with the data extracted from real re-
positories. Three characteristics of the repository are compared: 1) distribution of the number of 
publications among contributors (N), 2) the shape of the content growth function (GF), and 3) the 
final size of the repository (S).   

The repositories used for this evaluation is a subset of the repositories used in Ochoa and Duval 
(2008):  Ariadne, Connexions, and Maricopa Connexion representing the Learning Object Re-
positories (LORp); Merlot representing the Learning Object Referatories (LORf); MIT OCW rep-
resenting the Open Courseware (OCW); and SIDWeb, the Learning Management System used in 
the Escuela Superior Politécnica del Litoral, representing the LMS.  This data was captured be-
tween the 5th and the 8th of November 2007.  To perform the evaluation, the initial factors were 
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taken from the data extracted from these repositories and are presented in Table 1. These factors 
were fed into the model and used to run the simulation. To have a statistically meaningful com-
parison between the real data and the output of the model, 100 Monte-Carlo simulated runs were 
generated for each repository. 

Table 1. Initial factors extracted from the empirical data of the studied repositories 

Repository PRD(x) LTD(x) CGF 

Ariadne (LORp) Log-Normal 
(μlog=-3.25, σlog=1.27) 

Exponential  
(λ=0.0010) 

Bi-Phase Linear  
(slope1=0.02, slope2=0.06,  
breakpoint =1277) 

Connexions (LORp) Log-Normal  
(μlog=-4.11, σlog=1.36) 

Exponential  
(λ=0.0012) 

Exponential  
(λ=1.2x10-3) 

Maricopa (LORp) Log-Normal  
(μlog=-5.18, σlog=0.95) 

Exponential  
(λ=0.0012) 

Bi-Phase Linear  
(slope1=0.06, slope2=0.28, 
breakpoint =1095) 

Merlot (LORf) Log-Normal  
(μlog=-2.47, σlog=1.11) 

Exponential  
(λ=0.0015) 

Bi-Phase Linear  
(slope1=0.12, slope2=0.54, 
breakpoint 401) 

MIT  
(OCW) 

Log-Normal  
(μlog=-1.68, σlog=1.07) 

Weibull  
(k=1.72, λ=325) 

Exponential 
(λ=3.7x10-3) 

SIDWeb (LMS) Log-Normal  
(μlog=-2.57, σlog=0.96) 

Weibull  
(k=1.21, λ=588) 

Exponential 
(λ=1.8x10-3) 

 

First, a comparison is made of the distribution of publications (N) between the empirical and sim-
ulated data. To have a meaningful comparison, the parameters of the distribution of the simulated 
data are estimated with the same methodology used to obtain the empirical measures (Ochoa & 
Duval, 2008). As expected, each simulated data set was assigned slightly different parameters 
values. However, the values were normally distributed. A simple t-test was applied to establish 
whether it is reasonable to assume that the parameters assigned to the empirical data set belongs 
to the same population as the simulated parameters. If all the parameters of the empirical distribu-
tion belong to the same population as the simulated ones, it can be concluded that the empirical 
and simulated data sets have the same distribution. The p-value for the t-test is provided in Table 
2 together with the mean values of the simulated parameters. 

For LORs, the model is able to accurately simulate the alpha value for all the repositories. The 
alpha parameter basically determines the general shape of the Lotka distribution. The rate pa-
rameter, on the other hand, has a more subtle effect. This parameter determines the slight reduc-
tion in probability of finding very productive contributors. The model does not seem able to con-
sistently reproduce this value. The subtle effect that determines the exact value of rate is most 
probably lost during the simplifications of the model. An example of the simulation of the Con-
nexions repository is presented in Figure 1. 
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Figure 1. Comparison between the Empirical and Simulated Distribution of the Contribution (N) 
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Table 2. Comparison between the empirical and simulated distribution  
of the number of objects published per contributor (N) 

Repository N empirical N simulated (average) p-values 

Ariadne (LORp) Lotka exp. cut-off 
(α=1.57, λ=0.011) 

Lotka exp. cut-off 
(α=1.58, λ=0.001) 

p-α: 0.60 
p-λ: 0.02 

Connexions (LORp) Lotka exp. cut-off 
(α=1.35, λ=0.0094) 

Lotka exp. cut-off 
(α=1.42, λ=0.0002) 

p-α: 0.31 
p-λ: 0.07 

Maricopa (LORp) Lotka exp. cut-off 
(α=2.12, λ=0.0067) 

Lotka exp. cut-off 
(α=2.39, λ=0.04) 

p-α: 0.60 
p-λ: 0.02 

Merlot (LORf) Lotka exp. cut-off 
(α=1.88, λ=0.0006) 

Lotka exp. cut-off 
(α=1.76, λ=0.002) 

p-α: 0.28 
p-λ: 0.10 

MIT (OCW) Weibull  
(k=1.07, λ=40.5) 

Weibull  
(k=0.68, λ=35) 

p-k: 0.00 
p-λ: 0.22 

SIDWeb (LMS) Weibull  
(k=0.52, λ=17.14) 

Weibull  
(k=0.60, λ=19) 

p-k 0.21 
p-λ: 0.55 

 

 

The shape of the OCW MIT Weibull distribution of publications seems to present a major chal-
lenge for the model. The almost horizontal head of the distribution cannot be accurately simulated 
with the current calculations. The shape parameter is vastly underestimated. However, the tail of 
the distribution is reasonably matched by the simulated values and the scale parameter is correctly 
estimated. The comparison between one simulation run and the empirical data can be seen in Fig-
ure 1. The model, nonetheless, can model less extreme Weibull distributions, as can be seen in the 
estimation of the SIDWeb parameters. 

The next step in validating the model is to compare the shape of the content growth function (GF) 
and the final size of the repository (S). For the GF evaluation, the daily simulated production of 
objects was counted across contributors. First, the count was fitted with the same methodology 
and functions used to obtain the empirical results in Ochoa and Duval (2008). Counting the times 
that the correct function, Bi-Phase Linear, was selected, provided the best-fitting alternative. For 
the S evaluation, the total number of objects produced in each simulated data set was counted. 
The distribution of the final size follows a left-skewed distribution. The Empirical Cumulative 
Density Distribution (ECDF) was used to calculate the chances that the empirical size came from 
the same population. The results of these evaluations are presented in Table 3. 

The simulated growth functions seem to agree with the empirical measurements most of the time 
(>50%).  When the contributor base growth function is also Bi-Phase Linear (Ariadne, Maricopa, 
MERLOT), the accuracy of the prediction is high (90% or higher). However, when an exponen-
tial contributor rate growth is involved in the calculation (Connexions, MIT OCW, and SIDWeb), 
the identification rate decreases (60-80%).  It is interesting to note that thanks to the variability in 
the lifetime, an exponential contributor growth does not necessarily means exponential growth in 
the number of objects. However, as the miss-interpretation rate shows, when there is exponential 
growth in the number of contributors, exponential growth in the number of objects is a viable 
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outcome. These effects can be observed in Figure 2. There, a graphical representation of random 
simulated growth functions is presented. 

The actual parameters of the Growth Function (GF) are not analyzed, as they varied widely from 
simulation to simulation. The implication of this variation is not clear; it could be that natural var-
iation creates several types of growth from the same contributor population, or that this model, in 
its simplicity, does not take into account some relation between lifetime and production rate that 
is responsible for the shape of the function. More research is needed to solve this question. 

 

 

Table 3.  Validation of the Growth Function (GF) and the final Size (S) of the repositories 

Repository GF Empirical % GF 
Simulated = GF 
Empirical 

S Empirical Average S 
Simulated (p-value) 

Ariadne (LORp) Bi-Phase Linear 100% 4,875 5,516 (0.48) 

Connexions (LORp) Bi-Phase Linear 73% 5,134 6,052 (0.50) 

Maricopa (LORp) Bi-Phase Linear 100% 2,221 3,105 (0.36) 

Merlot (LORf) Bi-Phase Linear 98% 18,110 20,389 (0.61) 

MIT (OCW) Exponential 65% 53,880 48,320 (0.52) 

SIDWeb (LMS) Exponential 76% 21,675 25,443 (0.20) 

 
Finally, a comparison is made of the final number of produced objects when the simulations have 
been run for the same period of time as measured in the empirical data sets. As can be seen in 
Table 3, the size values for all the repositories were estimated correctly, even in repositories 
where the simulated and empirical publication distributions does not completely match (OCW). 
The reason for this resilience is that the tail of the distribution (or the head, in the case of OCW) 
is responsible for a small fraction of the objects. If the simulation can match the head (or the mid-
dle section, in the case of OCW), where most of the objects are published, the total simulated 
output is similar to the original repository. These results support the use of this model to calculate 
growth and required capacity. 
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Figure 2. Comparison between the Empirical Growth Function (left)  

and the Simulated Growth Function (right) 
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Conclusions and Implications 
The model presented makes the simple assumption that the only variables that affect the charac-
teristics of a repository are how frequently the contributors publish material (publication rate), 
how much time they persist in their publication efforts (lifetime), and at what rate they arrive at 
the repository (contributor growth function). The model combines those variables through a com-
putational simulation that is capable of predicting other repository characteristics, such as the dis-
tribution of publications among contributors, the shape of the content growth function, and the 
final size of the repository. 

The model has been evaluated with the data presented in the analysis sections. From this evalua-
tion, it can be concluded that the simple model is capable of simulating quite well the characteris-
tics observed in real repositories based only on the initial factor. However, the simplicity of the 
model can be seen when the model tries to simulate repositories with special characteristics, for 
example, when it tries to simulate repositories like OCW that have a small low-publishing com-
munity. Nonetheless, the model can be used at it is to predict future growth of current repositories 
or to simulate repositories with characteristics not seen naturally. For example, what the publica-
tion distributions will be like if the publication rate is uniformly distributed. Improvements of this 
model to include special cases, as well as interactions between the factors, are an interesting topic 
for further research.  

The most important implication that the development of this model has for LOR administrator-
management is to provide a tool that can be used to predict growth and behavior of the repository.  
For example, based in the observed growth in the number of contributors, their rate of publication 
and current lifetime, the model can be used to predict the number of objects that the repository 
will have in the future.  Also the model shows that if the lifetime distribution is altered, the 
growth will be immediately affected.  For example, if the repository could retain its contributors 
for longer periods of time, its growth could change from linear to exponential. 

Finally, the most important characteristic of the proposed model is its testability. It would be easy 
to construct competing models and test if they predict different characteristics of the repositories 
and can handle special cases that the current model cannot. This testability provides a way to 
measure progress in efforts to understand the nature and workings of the learning object publica-
tion process. 
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